Different Storage Conditions Influence Biocompatibility and Physicochemical Properties of Iron Oxide Nanoparticles
نویسندگان
چکیده
Superparamagnetic iron oxide nanoparticles (SPIONs) have attracted increasing attention in many biomedical fields. In magnetic drug targeting SPIONs are injected into a tumour supplying artery and accumulated inside the tumour with a magnet. The effectiveness of this therapy is thus dependent on magnetic properties, stability and biocompatibility of the particles. A good knowledge of the effect of storage conditions on those parameters is of utmost importance for the translation of the therapy concept into the clinic and for reproducibility in preclinical studies. Here, core shell SPIONs with a hybrid coating consisting of lauric acid and albumin were stored at different temperatures from 4 to 45 °C over twelve weeks and periodically tested for their physicochemical properties over time. Surprisingly, even at the highest storage temperature we did not observe denaturation of the protein or colloidal instability. However, the saturation magnetisation decreased by maximally 28.8% with clear correlation to time and storage temperature. Furthermore, the biocompatibility was clearly affected, as cellular uptake of the SPIONs into human T-lymphoma cells was crucially dependent on the storage conditions. Taken together, the results show that the particle properties undergo significant changes over time depending on the way they are stored.
منابع مشابه
BSA nanoparticles loaded with IONPs for biomedical applications: fabrication optimization, physicochemical characterization and biocompatibility evaluation
Objective(s): Cancer diagnosis in its early stages of progress, can enhance the efficiency of treatment utilizing conventional therapy methods. Non-biocompatibility of iron oxide nanoparticles (IONPs) has made a big challenge against their usage as a contrast agent. Efficient coverage by biomolecules such as albumin can be a solution to overcome this problem. Herein, albumin-coated IONPs were p...
متن کاملGreen synthesis of Iron oxide nanoparticles using carum carvi L. and modified with chitosan in order to optimize the anti-cancer drug adsorption
Magnetic iron oxide nanoparticles have gained a lot of attention in drug delivery systems because they can control a drug pathway to deliver it to the specific site under a magnetic field which is related to their magnetic core and surface coating. Chitosan-coated FeNPs, have prominent antimicrobial and biological properties that make chitosan a promising biopolymer for drug delivery applicatio...
متن کاملGreen synthesis of Iron oxide nanoparticles using carum carvi L. and modified with chitosan in order to optimize the anti-cancer drug adsorption
Magnetic iron oxide nanoparticles have gained a lot of attention in drug delivery systems because they can control a drug pathway to deliver it to the specific site under a magnetic field which is related to their magnetic core and surface coating. Chitosan-coated FeNPs, have prominent antimicrobial and biological properties that make chitosan a promising biopolymer for drug delivery applicatio...
متن کاملSynthesis of Iron Oxide Nanoparticles using Borohydride Reduction
Iron oxide (Fe2O3) nanoparticles were synthesized by a simple approach using sodium borohydride (NaBH4) and Iron chloride hexahydrate (FeCl3.6H2O). Their physicochemical properties were characterized by high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and electron dispersive spectroscopy (EDS). XRD pattern showed that the iron...
متن کاملSynthesis of Iron Oxide Nanoparticles using Borohydride Reduction
Iron oxide (Fe2O3) nanoparticles were synthesized by a simple approach using sodium borohydride (NaBH4) and Iron chloride hexahydrate (FeCl3.6H2O). Their physicochemical properties were characterized by high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and electron dispersive spectroscopy (EDS). XRD pattern showed that the iron...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 16 شماره
صفحات -
تاریخ انتشار 2015